Giải bài 6.8 bài hàm số bậc hai

Bài tập 6.8. Từ các parabol đã vẽ ở Bài tập 6.7 hãy cho biết khoảng đồng biến và khoảng nghịch biến của mối hàm số bậc hai tương ứng.

Bài Làm:

a. Hàm số đồng biến trên khoảng $(\frac{3}{2};+\infty )$

    Hàm số nghịch biến trên khoảng $(-\infty; \frac{3}{2} )$.

b. Hàm số đồng biến trên khoảng $(-\infty; \frac{1}{2})$.

    Hàm số nghịch biến trên khoảng $(\frac{1}{2};+\infty )$

c. Hàm số đồng biến trên khoảng $(-1;+\infty )$

    Hàm số nghịch biến trên khoảng $(-\infty; -1 )$.

d. Hàm số đồng biến trên khoảng $(-\infty; \frac{1}{2})$.

    Hàm số nghịch biến trên khoảng $(\frac{1}{2};+\infty )$

Xem thêm Bài tập & Lời giải

Trong: Giải bài 16 Hàm số bậc hai

Bài tập 6.7. Vẽ các đường parabol sau:

a. $y=x^{2}-3x+2$

b. $y=-2x^{2}+2x+3$

c. $y=x^{2}+2x+1$

d. $y=-x^{2}+x-1$

Xem lời giải

Bài tập 6.9. Xác định parabol $y = ax^{2}+bx+1$. trong mỗi trường hợp sau:

a. Đi qua hai điểm A(1; 0) và B(2; 4)

b. Đi qua điểm A(1; 0) và có trục đối xứng x =1

c. Có đỉnh I(1; 2)

d. Đi qua điểm A(-1; 1) và có tung độ đỉnh -0,25.

Xem lời giải

Bài tập 6.10. Xác định parabol $y = ax^{2}+bx+1$, biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; -12).

Xem lời giải

Bài tập 6.11. Gọi (P) là đồ thị hàm số bậc hai $y = ax^{2}+bx+1$. Hãy xác định dấu của hệ số a và biệt thức $\Delta $, trong mỗi trường hợp sau:

a. (P) nằm hoàn toàn phía trên trục hoành.

b. (P) nằm hoàn toàn phía dưới trục hoành.

c. (P) cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía dưới trục hoành.

d. (P) tiếp xúc với trục hoành và nằm phía trên trục hoành.

Xem lời giải

Bài tập 6.12. Hai bạn An và Bình trao đổi với nhau:

An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội có dạng một parabol, khoảng cách giữa hai chân cổng là 8m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng là 0,5 m là 2,93 m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12m.

Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác.

Dựa vào thông tin mà An đọc được, em hãy tính chiều cao của cổng Trường Đại học Bách Khoa Hà Nội để xem kết quả bạn An tính được có chính xác không nhé.

Xem lời giải

Bài tập 6.13. Bác Hùng dùng 40 m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau. 

a. Tính diện tích mảnh vườn hình chữ nhật rào được theo chiều rộng x (mét) của nó.

b. Tìm kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.

Xem lời giải

Bài tập 6.14. Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol có phương trình $y=\frac{-3}{1000}x^{2}+x$, trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vật so với mặt đất

a. Tìm độ cao cực đại của vật trong quá trình bay.

b. Tính khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O. Khoảng cách này gọi là tầm xa của quỹ đạo.

Giải bài 16 Hàm số bậc hai

Xem lời giải

Xem thêm các bài Giải Toán 10 tập 2 kết nối tri thức, hay khác:

Xem thêm các bài Giải Toán 10 tập 2 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập