Lý thuyết trọng tâm toán 10 chân trời bài 3: Đường tròn trong mặt phẳng tọa độ

Tổng hợp kiến thức trọng tâm toán 10 chân trời sáng tạo bài 3 Đường tròn trong mặt phẳng tọa độ. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

CHƯƠNG IX. PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

BÀI 3. ĐƯỜNG TRÒN TRONG MẶT PHẲNG TỌA ĐỘ

1. PHƯƠNG TRÌNH ĐƯỜNG TRÒN 

HĐKP1:

HĐKP1:

IM = R=$\sqrt{(x-a)^{2}+(y-b)^{2}}$

Kết luận:

Trong mp Oxy, phương trình đường tròn (C) có tâm I(a;b) bán kính R là:

(x-a)$^{2}$ + (y-b)$^{2}$ =R$^{2}$

Ví dụ 1: SGK-tr59

Ví dụ 2: SGK-tr59

* Nhận xét:

(x-a)$^{2}$ + (y-b)$^{2}$ =R$^{2}$

<=> x$^{2}$ + y$^{2}$ - 2ax - 2by + (a$^{2}$ + b$^{2}$ -R$^{2}$) =0

Vậy phương trình đường tròn (x-a)$^{2}$ + (y-b)$^{2}$ =R$^{2}$ có thể được viết dưới dạng 

x$^{2}$ + y$^{2}$ - 2ax - 2by + c = 0, trong đó c = a$^{2}$ + b$^{2}$ - R$^{2}$ .

+ Phương trình x$^{2}$ + y$^{2}$ - 2ax - 2by + c = 0 là phương trình của đường tròn (C) 

a$^{2}$ + b$^{2}$ – c > 0

(C) có tâm I(a; b) và bán kính R =  $\sqrt{a^{2}+b^{2}-c}$

Ví dụ 3: SGK-tr60

Thực hành 1.

a) Phương trình đường tròn (C) có tâm O(0; 0), bán kính R = 4 là:

x$^{2}$ +y$^{2}$=16

b) Phương trình đường tròn (C) có tâm I(2; - 2), bán kính R = 8 là:

(x-2)$^{2}$+(y+2)$^{2}$=64

c) Gọi I(a; b) là tâm đường tròn (C). Phương trình đường tròn C có dạng:

x$^{2}$+y$^{2}$-2ax-2by+c=0

(C) đi qua ba điểm A(1; 4), B(0; 1), C(4; 3) nên ta có hệ phương trình:

$\left\{\begin{matrix}1^{2}+4^{2}-2a-8b+c=0 & \\ 0^{2}+1^{2}-2b+c=0 & \\ 4^{2}+3^{2}-8a-6b+c=0 & \end{matrix}\right.$

<=> $\left\{\begin{matrix}2a+8b-c=17 & \\ 2b-c=1 & \\ 8a+6b-c=25 & \end{matrix}\right.$  

 $\left\{\begin{matrix}a=2 & \\ b=2 & \\ c=3 & \end{matrix}\right.$

Vậy phương trình đường tròn (C) là: x$^{2}$+y$^{2}$-4x-4y+3=0

Thực hành 2.

a) Phương trình đã cho có dạng: x$^{2}$+y$^{2}$-2ax-2by+c =0 với a = 1; b = 2; c = -20.

Ta có: a$^{2}$+b$^{2}$-c = 1$^{2}$+2$^{2}$+20=25>0. Vậy đây là phương trình đường tròn có tâm I(1; 2) và bán kính R = $\sqrt{25}$ = 5.

b) Phương trình có dạng 

(x-a)$^{2}$+(y-b)$^{2}$=R$^{2}$ với a = -5; b = -1; R = 11.

Vậy đây là phương trình đường tròn có tâm I(-5; -1) và bán kính R = 11.

c) Phương trình có dạng 

x$^{2}$+y$^{2}$-2ax-2by+c =0 với a = 2; b = 4; c = 5.

Ta có: a$^{2}$+b$^{2}$-c = 2$^{2}$+4$^{2}$-5=15>0. 

Vậy đây là phương trình đường tròn có tâm I(2; 4) và bán kính R = $\sqrt{15}$.

d) Ta có: 2x$^{2}$+2y$^{2}$+6x+8y-2=0  

<=> x$^{2}$+y$^{2}$+3x+4y-1=0

Phương trình có dạng 

x$^{2}$+y$^{2}$-2ax-2by+c =0 với a =; b = -2; c = -1.

Ta có: a$^{2}$+b$^{2}$ - c = (-$\frac{3}{2}$)$^{2}$+(-2)$^{2}$ + 1 = $\frac{29}{4}$ > 0. 

Vậy đây là phương trình đường tròn có tâm I(-$\frac{3}{2}$; -2) và bán kính R = $\frac{\sqrt{29}}{2}$.

Vận dụng 1.

Phương trình biểu diễn tập hợp các điểm xa nhất mà vòi có thể phun tới là phương trình đường tròn tâm I(30; 40), bán kính R = 50:

(x-30)$^{2}$+(y-40)$^{2}$=50$^{2}$

Vận dụng 2.

a) Đường tròn (C) có tâm I(13; 4) và bán kính R =$\sqrt{16}$ = 4.

b) Thay tọa độ điểm A(11; 4) vào phương trình đường tròn (C), ta được:

(11-13)$^{2}$+(4-4)$^{2}$=4<16 => Diễn viên A được chiếu sáng.

Thay tọa độ điểm B(8; 5) vào phương trình đường tròn (C), ta được:

(8-13)$^{2}$+(5-4)$^{2}$=26>16 => Diễn viên B không được chiếu sáng.

Thay tọa độ điểm C(15; 5) vào phương trình đường tròn (C), ta được:

(15-13)$^{2}$+(5-4)$^{2}$=5<16 => Diễn viên C được chiếu sáng.

2. PHƯƠNG TRÌNH TIẾP TUYẾN CỦA ĐƯỜNG TRÒN

HĐKP2:

HĐKP2:

a) $\underset{M_{0}M}{\rightarrow}$ = (x - x$_{0}$; y - y$_{0}$);  M0I = (a - x$_{0}$; b - y$_{0}$)

b) $\underset{M_{0}M}{\rightarrow}$. $\underset{M_{0}I}{\rightarrow}$ = (x - x$_{0}$). (a - x$_{0}$) + (y - y$_{0}$). (b - y$_{0}$) = 0

c) Phương trình $\underset{M_{0}M}{\rightarrow}$.$\underset{M_{0}I}{\rightarrow}$ = 0 là phương trình của đường thẳng $\Delta $.

⇒ Kết luận:

Phương trình tiếp tuyến của đường tròn tâm I(a;b ) tại điểm M$_{0}$(x$_{0}$;y$_{0}$) tnằm trên đường tròn là:

(x$_{0}$-a)(x-x$_{0}$)+(y$_{0}$-b)(y-y$_{0}$)=0 

Ví dụ 4: SGK-tr61,62

Thực hành 3.

Ta có: 4$^{2}$+6$^{2}$-2.4-4.6-20=0 nên A(4; 6)$ \in $ (C).

Đường tròn (C) có tâm I(1; 2).

Phương trình tiếp tuyến của (C) tại A(4; 6) là:

(1-4)(x-4)+(2-6)(y-6)=0

 <=> -3x-4y+36=0  

<=> 3x+4y-36=0

Vận dụng 3.

Vận dụng 3.

Đường tròn (C) có tâm I(1; 1).

Ta có: (1712-1)$^{2}$+(2-1)$^{2}$ = $\frac{169}{144}$

⇒ M ($\frac{17}{12}$; 2)$\in $ (C).

Phương trình tiếp tuyến của đường tròn (C) tại điểm M là:

(1-$\frac{17}{12}$)(x-$\frac{17}{12}$)+(1-2)(y-2)=0

 <=> $\frac{5}{12}$x+y-$\frac{373}{144}$=0

<=> 60x + 144y - 373 = 0

Xem thêm các bài Giải Toán 10 tập 2 chân trời sáng tạo, hay khác:

Xem thêm các bài Giải Toán 10 tập 2 chân trời sáng tạo được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập