Lý thuyết trọng tâm toán 8 cánh diều bài 3: Hằng đẳng thức đáng nhớ

Tổng hợp kiến thức trọng tâm toán 8 cánh diều bài 3: Hằng đẳng thức đáng nhớ. Đa thức nhiều biến. Tài liệu nhằm củng cố, ôn tập lại nội dung kiến thức bài học cho học sinh dễ nhớ, dễ ôn luyện. Kéo xuống để tham khảo

I. HẰNG ĐẲNG THỨC

HĐ1:

a) Thay x = 1; y = −1 vào biểu thức P và Q, ta được:

  • P = 2 . [1 + (−1)] = 2 . 0 = 0;
  • Q = 2 . 1 + 2 . (−1) = 2 – 2 = 0.

Vậy tại x = 1; y = −1 thì P = Q.

b) Thay x = 2; y = −3 vào biểu thức P và Q, ta được:

  • P = 2 . [2 + (−3)] = 2 . (−1) = −2;
  • Q = 2 . 2 + 2 . (−3) = 4 – 6 = −2.

Vậy tại x = 2; y = −3 thì P = Q.

Nhận xét: Trong mỗi trường hợp trên, giá trị của biểu thức P luôn bằng giá trị của biểu thức Q.

Kết luận: Nếu hai biểu thức P và Q nhận giá trị như nhau và mọi giá trị của biến thì ta nói P = Q là một đồng nhất thức hay hằng đẳng thức.

Ví dụ 1: (SGK – tr18)

Luyện tập 1:

Ta có:

 x(xy2 + y) – y(x2y + x)

= x . xy2 + x . y – y . x2y – y . x

= x2y2 + xy – x2y2 – xy

= (x2y2 – x2y2) + (xy – xy)

= 0 + 0 = 0 (đpcm)

II. HẰNG ĐẲNG THỨC ĐÁNG NHỚ

1. Bình phương của một tổng, hiệu

HĐ2:

Bình phương của một tổng, hiệu

a)

C1: SMNPQ = (a + b)(a + b) = (a+b)2

C2: SMNPQ = a2 + ab + ab + b2 = a2 + 2ab + b2

b) (a + b)(a + b) = a . a + a . b + b . a + b . b = a2 + 2ab + b2;

c) (a – b)(a – b) = a . a – a . b – b . a + b . b = a2 – 2ab + b2.

Kết luận: Với hai biểu thức tuỳ ý A và B, ta có:

(A+B)2 =  A2 + 2AB + B2

(A – B)2 = A2 – 2AB + B2

Ví dụ 2: (SGK – tr19)

Luyện tập 2.

a) $\left ( x+\frac{1}{2} \right )^{2}=x^{2}+2.x.\frac{1}{2}+\left ( \frac{1}{2} \right )^{2}$ = $x^{2}+x+\frac{1}{4}$

b) (2x + y)2 

= (2x)2 + 2 . 2x . y + y2 

= 4x2 + 4xy + y2;

c) (3 – x)2 

= 32 – 2 . 3 . x + x2

= 9 – 6x + x2;

d) (x – 4y)2 

= x2 – 2 . x . 4y + (4y)2 

= x2 – 8xy + 16y2.

Ví dụ 3: (SGK – tr19)

Luyện tập 3.

a) y2 + y + $\frac{1}{4}$

= y2 + 2.y + ($\frac{1}{2}$)2

= (y + )2

b) y2 + 49 – 14y

= y2 – 2 . 7 . y + 72 

= (y – 7)2.

Ví dụ 4: (SGK – tr19)

Luyện tập 4

$49^{2}=(50-1)^{2}=50^{2}-2.50.1+1^{2}$

= 2500 - 100 + 1 = 2401

2. Hiệu của hai bình phương

HĐ3.

Ta có: (a – b)(a + b)

= a . a + a . b – b . a + b . b

= a2 – b2.

Nhận xét: (a – b)(a + b)  = a2 – b2

Kết luận: Với hai biểu thức tuỳ ý A và B, ta có: A2 – B2 = (A + B). (A - B)

Ví dụ 5 (SGK-tr20)

Luyện tập 5.

a) 9x2 – 16 = (3x)2 – 42 = (3x + 4)(3x – 4);

b) 25 – 16y2 = 52 – (4y)2 = (5 + 4y)(5 – 4y).

Ví dụ 6 (SGK-tr20)

Luyện tập 6

a) (a – 3b)(a + 3b) = a2 – (3b)2 = a2 – 9b2;

b) (2x + 5)(2x – 5) = (2x)2 – 52 = 4x2 – 25;

c) (4y – 1)(4y + 1) = (4y)2 – 1 = 16y2 – 1.

Ví dụ 7. (SGK-tr20)

Luyện tập 7

Ta có: 48 . 52

= (50 – 2)(50 + 2)

= 502 – 22 = 2500 – 4

= 2496.

3. Lập phương của một tổng, một hiệu

HĐ4.

a) (a + b)(a + b)2

= (a + b)(a2 + 2ab + b2)

= a(a2 + 2ab + b2) + b(a2 + 2ab + b2)

= a.a2 + a.2ab + a.b2 + b.a2 + b.2ab + b.b2

= a3 + 2a2b + ab2 + a2b + 2ab2 + b3

= a3 + (2a2b + a2b) + (ab2 + 2ab2) + b3

= a3 + 3a2b + 3ab2 + b3.

b) (a – b)(a2 – 2ab + b2)

= a(a2 – 2ab + b2) – b(a2 – 2ab + b2)

= a.a2 – a.2ab + a.b2 – b.a2 + b.2ab – b.b2

= a3 – 2a2b + ab2 – a2b + 2ab2 – b3

= a3 – (2a2b + a2b) + (ab2 + 2ab2) – b3

= a3 – 3a2b + 3ab2 – b3.

Nhận xét:

Ta có:

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a - b)3 = a3 - 3a2b + 3ab2 - b3

Kết luận: Với hai biểu thức tuỳ ý A và B, ta có:

  • $(A+B)^{2}=A^{3}+3A^{2}B+3AB^{2}+B^{3}$
  • $(A-B)^{2}=A^{3}-3A^{2}B+3AB^{2}-B^{3}$

Ví dụ 8: SGK – tr21

Luyện tập 8.

a) (3 + x)2

= 33 + 3 . 32 . x + 3 . 3 . x2 + x3 

= 27 + 27x + 9x2 + x3;

b) (a + 2b)3 

= a3 + 3 . a2 . 2b + 3 . a . (2b)2 + (2b)3

= a3 + 6a2b + 12ab2 + 8b3;

c) (2x – y)3 

= $(2x)^{3}-3.(2x)^{2}.y+3.2x.y^{2}-y^{3}$

= $8^{3}-12x^{2}y+6xy^{2}-y^{3}$

Ví dụ 9: SGK – tr21

Luyện tập 9.

Ta có:

8x3 – 36x2y + 54xy2 – 27y3

= (2x)3 – 3 . (2x)2 . 3y + 3 . 2x . (3y)2 – (3y)3

= (2x – 3y)3.

Ví dụ 10: SGK – tr21

Luyện tập 10.

Ta có:

 1013 – 3 . 1012 + 3 . 101 – 1

= 1013 – 3 . 1012 . 1 + 3 . 101 . 12 – 13

= (101 – 1)3 = 1003 = 1 000 000.

4. Tổng và hiệu của hai lập phương

HĐ5:

a) (a + b)(a2 – ab + b2)

= a . a2 – a . ab + a . b2 + b . a2 – b . ab + b . b2

= a3 – a2b + ab2 + a2b – ab2 + b

= a3 + b3.

b) (a – b)(a2 + ab + b2)

= a . a2 + a . ab + a . b2 – b . a2 – b . ab – b . b2

= a3 + a2b + a2b – a2b – a2b – b3 

= a3 – b3.

Nhận xét:

a3 + b3 = (a + b)(a2 – ab + b2)

a3 - b3 = (a - b)(a2 + ab + b2)

Kết luận: Với hai biểu thức tuỳ ý A và B, ta có:

A3 + B3 = (A + B). (A2 – AB + B2)

A3 - B3 = (A - B). (A2 + AB + B2)

Ví dụ 11. (SGK-tr22)

Luyện tập 11.

a) 27x3 + 1

= (3x)3 + 1

= (3x + 1)[(3x)2 – 3x . 1 + 12]

b) 64 – 8y3 

= 43 – (2y)3 

= (4 + 2y)(4 – 2y).

Xem thêm các bài Giải toán 8 tập 1 cánh diều, hay khác:

Xem thêm các bài Giải toán 8 tập 1 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 8 giúp bạn học tốt hơn.

Lớp 8 | Để học tốt Lớp 8 | Giải bài tập Lớp 8

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 8, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 8 giúp bạn học tốt hơn.