Bài tập & Lời giải
Bài tập 4.7. Cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ không cùng phương. Chứng minh rằng
$|\overrightarrow{a}| - |\overrightarrow{b}| < |\overrightarrow{a} + \overrightarrow{b}| < |\overrightarrow{a}| + |\overrightarrow{b}|$
Xem lời giải
Bài tập 4.8. Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.
a) Chứng minh rằng O là trung điểm MN.
b) Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.
Xem lời giải
Bài tập 4.9. Cho tứ giác ABCD.
a) Chứng minh rằng $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0}$.
b) Chứng minh rằng $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CD} + \overrightarrow{DA}$.
Xem lời giải
Bài tập 4.10. Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của các cạnh BC, CA, AB.
a) Xác định vectơ $\overrightarrow{AF} - \overrightarrow{BD} + \overrightarrow{CE}$.
b) Xác định điểm M thoà mãn $\overrightarrow{AF} - \overrightarrow{BD} + \overrightarrow{CE} = \overrightarrow{MA}$.
c) Chứng minh rằng $\overrightarrow{MC} = \overrightarrow{AB}$.
Xem lời giải
Bài tập 4.11. Trên Hình 4.7 biểu diễn ba lực $\overrightarrow{F_{1}}$, $\overrightarrow{F_{2}}$, $\overrightarrow{F_{3}}$ cùng tác động vào một vật ở vị trí cân bằng A. Cho biết |$\overrightarrow{F_{1}}$| = 30N, |$\overrightarrow{F_{2}}$| = 40N. Tính cường độ của lực $\overrightarrow{F_{3}}$.
Xem lời giải
Bài tập 4.12. Trên mặt phẳng, chất điểm A chịu tác dụng của ba lực $\overrightarrow{F_{1}}$, $\overrightarrow{F_{2}}$, $\overrightarrow{F_{3}}$ và ở trạng thái cân bằng. Góc giữa hai vectơ $\overrightarrow{F_{1}}$ và $\overrightarrow{F_{2}}$ bằng $60^{o}$. Tính độ lớn của $\overrightarrow{F_{3}}$, biết |$\overrightarrow{F_{1}}$| = |$\overrightarrow{F_{1}}$ = $2\sqrt{3}$N.