Bài tập & Lời giải
Bài tập 4.29. Cho tam giác đều ABC có độ dải các cạnh bằng 1.
a) Gọi M là trung điểm của BC. Tính tích vô hướng của các cặp vectơ $\overrightarrow{MA}$ và $\overrightarrow{BA}$, $\overrightarrow{MA}$ và $\overrightarrow{AC}$.
b) Gọi N là điểm đối xứng với B qua . Tính tích vô hướng $\overrightarrow{AM} . \overrightarrow{AN}$.
c) Lấy điểm P thuộc đoạn AN sao cho AP = 3PN. Hãy biểu thị các vectơ $\overrightarrow{AP}$, $\overrightarrow{MP}$ theo hai vectơ $\overrightarrow{AB}$ và $\overrightarrow{AC}$. Tinh độ dài đoạn MP.
Xem lời giải
Bài tập 4.30. Cho hình chữ nhật ABCD có AB = 1, BC = $\sqrt{2}$. Gọi M là trung điểm của AD.
a) Chứng minh rằng các đường thẳng AC và BM vuông góc với nhau.
b) Gọi H là giao điểm của AC, BM. Gọi N là trung điểm của AH và P là trung điểm của CD. Chứng minh rằng tam giác NBP là một tam giác vuông.
Xem lời giải
Đề bài 4.31. Cho tam giác ABC có $\widehat{A} < 90^{o}$. Dựng ra phía ngoài tam giác hai tam giác vuông cân đỉnh A là ABD và ACE. Gọi M, N, P theo thứ tự là trung điểm BC, BD, CE. Chứng minh rằng:
a) AM vuông góc với DE;
b) BE vuông góc với CD;
c) Tam giác MNP là một tam giác vuông cân.
Xem lời giải
Bài tập 4.32. Cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ thoà mãn |$\overrightarrow{a}$| = 6, |$\overrightarrow{b}$| = 8 và |$\overrightarrow{a} + \overrightarrow{b}$|= 10.
a) Tính tích vô hướng $\overrightarrow{a} . (\overrightarrow{a} + \overrightarrow{b})$.
b) Tinh số đo của góc giữa hai vectơ $\overrightarrow{a}$ và $\overrightarrow{a} + \overrightarrow{b}$
Xem lời giải
Bài tập 4.33. Cho tam giác ABC không cân. Gọi D, E, F theo thứ tự là chân các đường cao kẻ từ A, B, C; gọi M, N, P tương ứng là trung điểm các cạnh BC, CA, AB. Chứng minh rằng
$\overrightarrow{MD} . \overrightarrow{BC} + \overrightarrow{NE} . \overrightarrow{CA} + \overrightarrow{PE} . \overrightarrow{AB}= 0$
Xem lời giải
Bài tập 4.34. Trong mặt phẳng toạ độ Oxy cho hai điểm A(2; 1) và B(4; 3).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho tam giác ABC vuông tại A. Tính chu vi và diện tích của tam giác ABC.
b) Tìm toạ độ của điểm D sao cho tam giác ABD vuông cân tại A.
Xem lời giải
Bài tập 4.35. Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 4) và C(9; 2) là hai đỉnh của hình vuông ABCD. Tim toạ độ các đỉnh B, D, biết rằng tung độ của B là một số âm.
Xem lời giải
Bài tập 4.36. Trong mặt phẳng toạ độ Oxy cho hai điểm A(1; 1) và B(7; 5).
a) Tìm toạ độ của điểm C thuộc trục hoành sao cho C cách đều A và B.
b) Tìm toạ độ của điểm D thuộc trục tung sao cho vectơ $\overrightarrow{DA} + \overrightarrow{DB}$ có độ dài ngắn nhất.
Xem lời giải
Bài tập 4.37. Trong mặt phẳng toạ độ Oxy cho ba điểm A(-3; 2), B(1; 5) và C(3; -1).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ấy.
b) Tìm toạ độ trực tâm H của tam giác ABC.
c) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tìm toạ độ của I.
Xem lời giải
Bài tập 4.38. Cho ba điểm M, N, P. Nếu một lực $\overrightarrow{F}$ không đổi tác động lên một chất điểm trong suốt quá trình chuyển động của chất điểm, thì các công sinh bởi lực $\overrightarrow{F}$ trong hai trường hợp sau có mối quan hệ gì với nhau?
a) Chất điểm chuyển động theo đường gấp khúc từ M đến N rồi tiếp tục từ N đến P.
b) Chất điểm chuyển động thẳng từ M đến P.