Giải Câu 3 Bài 2: Phương trình đường tròn sgk Hình học 10 Trang 84

Câu 3: Trang 84 - SGK Hình học 10

Lập phương trình đường tròn đi qua ba điểm:

 a) \(A(1; 2); B(5; 2); C(1; -3)\)

b) \(M(-2; 4); N(5; 5); P(6; -2)\)

Bài Làm:

Sử dụng phương trình đường tròn có dạng: \(x^2+y^2-2 ax-2by +c = 0\) 

a) Đường tròn đi qua điểm \(A(1; 2)\) nên ta có:

\(1^2+ 2^2– 2a -4b + c = 0   \Leftrightarrow 2a + 4b – c = 5\)

Đường tròn đi qua điểm \(B(5; 2)\) nên ta có:

\(5^2+ 2^2– 10a -4b + c = 0 \Leftrightarrow 10a + 4b – c = 29\)

Đường tròn đi qua điểm \(C(1; -3)\) nên ta có:

\(1^2+ (-3)^2 – 2a + 6b + c = 0   \Leftrightarrow 2a - 6b – c = 10\)

Để tìm \(a, b, c\) ta giải hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 \,\ (1) & & \\ 10a +4b - c= 29 \,\ (2) & & \\ 2a- 6b -c =10 \,\  (3) & & \end{matrix}\right.\)

Lấy $(1)-(3)$ ta được: $10b=-5  \Leftrightarrow b=-0,5$

Láy $(2)-(1)$ ta được: $8a=24 \Leftrightarrow a=3$

Thay $a,b$ vừa tìm được vào $(1)$ ta có: $6-2-c=5 \Leftrightarrow c=-1$

Giải hệ ta được: \(\left\{ \matrix{a = 3 \hfill \cr b = - 0,5 \hfill \cr c = - 1 \hfill \cr} \right.\)

Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)

b) Đường tròn đi qua điểm \(M(-2; 4)\) nên ta có:

\((-2)^2+ 4^2+4a -8b + c = 0   \Leftrightarrow  4a - 8b + c = -20\,\ (4)\)

Đường tròn đi qua điểm \(N(5; 5)\) nên ta có:

\(5^2+ 5^2– 10a -10b + c = 0 \Leftrightarrow  10a +10b – c = 50\,\ (5)\)

Đường tròn đi qua điểm \(P(6; -2)\) nên ta có:

\(6^2+ (-2)^2 – 12a + 4b + c = 0   \Leftrightarrow  12a - 4b – c = 40\,\ (6)\)

Ta có hệ phương trình: 

$$\left\{ \matrix{4a - 8b + c = - 20 \hfill \cr 10a + 10b - c = 50 \hfill \cr 12a - 4b - c = 40 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{a = 2 \hfill \cr b = 1 \hfill \cr c = - 20 \hfill \cr} \right.$$

Phương trình đường tròn đi qua ba điểm \(M(-2; 4); N(5; 5); P(6; -2)\) là:

\(x^2+ y^2- 4x – 2y - 20 = 0\)

Xem thêm Bài tập & Lời giải

Trong: Giải Bài 2: Phương trình đường tròn sgk Hình học 10 Trang 81

Câu 1: Trang 83 - SGK Hình học 10

Tìm tâm và bán kính của các đường tròn sau:

a) \({x^2} + {\rm{ }}{y^2} - 2x-2y - 2{\rm{ }} = 0\)

b) \(16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)

c) \({x^{2}} + {\rm{ }}{y^{2}} - {\rm{ }}4x{\rm{ }} + {\rm{ }}6y{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0.\)

Xem lời giải

Câu 2: Trang 83 - SGK Hình học 10 

Lập phương trình đường tròn \((C)\) trong các trường hợp sau:

a) \((C)\) có tâm \(I(-2; 3)\) và đi qua \(M(2; -3)\);

b) \((C)\) có tâm \(I(-1; 2)\) và tiếp xúc với đường thẳng \(d : x – 2y + 7 = 0\);

c) \((C)\) có đường kính \(AB\) với \(A(1; 1)\) và \(B(7; 5)\).

Xem lời giải

Câu 4: Trang 84 - SGK Hình học 10

Lập phương trình đường tròn tiếp xúc với hai trục tọa độ \(Ox, Oy\) và đi qua điểm \(M(2 ; 1)\)

Xem lời giải

Câu 5: trang 84 - SGK Hình học 10

Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng \(d : 4x – 2y – 8 = 0\)

Xem lời giải

Câu 6: Trang 84 - SGK Hình học 10

Cho đường tròn \((C)\) có phương trình:

            \({x^2} + {\rm{ }}{y^2} - {\rm{ }}4x{\rm{ }} + {\rm{ }}8y{\rm{ }} - {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

a)     Tìm tọa độ tâm và bán kính của \((C)\)

b)    Viết phương trình tiếp tuyến với \((C)\) đi qua điểm \(A(-1; 0)\)

c)     Viết phương trình tiếp tuyến với \((C)\) vuông góc với đường thẳng  \(3x – 4y + 5 = 0\)

Xem lời giải

Lớp 10 | Để học tốt Lớp 10 | Giải bài tập Lớp 10

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 10, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 10 giúp bạn học tốt hơn.

Lớp 10 - Kết nối tri thức

Giải sách giáo khoa

Giải sách bài tập