Đề thi thứ vào 10 môn Toán năm 2017 Trường Chuyên Nguyễn Huệ Lần 1
Ngày thi : 10 - 03 - 2017
Thời gian làm bài : 150 phút ( Không kể thời gian phát đề )
Bài 1 : ( 2 điểm )
Cho phương trình x² – x -2 = 0 .
a) Giải phương trình.
b) Vẽ hai đồ thị y = x² và y = x + 2 trên cùng một hệ trục tọa độ.
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a là hoành độ giao điểm của hai đồ thị.
Bài 2 : ( 1,5 điểm )
Cho phương trình : $\sqrt{x-1}\begin{bmatrix}(2m-3)x+m+(1-m)x-3\end{bmatrix}=0$ (1)
Tìm m đề phương trình có 2 nghiệm phân biệt.
Bài 3 : ( 2,5 điểm )
Cho hình chữ nhật ABCD nội tiếp đường tròn tâm O, bán kính R, có $\widehat{AOB}=60^{\circ}$ .
a) Tính các cạnh của hình chữ nhật ABCD theo R.
b) Trên cung nhỏ BC lấy điểm M ( $M\neq B;M\neq C$ ). Gọi G là trọng tâm của tam giác MBC. Khi điểm M di động trên cung nhỏ BC thì điểm G di động trên đường nào?
Bài 4 : ( 3 điểm )
Cho $\triangle ABC$ . Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho $\frac{AM}{AB}=\frac{AN}{AC}=\frac{1}{3}$ . Gọi O là giao điểm của BN và CM.
Gọi H, L lần lượt là chân đường vuông góc kẻ từ A, C tới đường thẳng BN.
a/ Chứng minh CL = 2 AH.
b/ Chứng minh: $S_{BOC} = 2S_{BOA}$ .
Kẻ CE và BD vuông góc với AO. Chứng minh BD = CE.
c/ Giả sử $S_{ABC} = 20 cm^{2}$ , tính $S_{AMON}$ .
Bài 5 : ( 1 điểm )
Với a , b , c , x, y , z thỏa mãn : $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1, \frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0$
Tính giá trị của $A=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}$.
- - - - - - - - - - HẾT - - - - - - - - - -