Câu 8: Trang 93 - SGK Hình học 10
Tìm góc giữa hai đường thẳng \(\Delta_1\) và \(\Delta_2\) trong các trường hợp sau:
a) \(\Delta_1\): \(2x + y – 4 = 0\) ; \(\Delta_2\): \(5x – 2y + 3 = 0\)
b) \(\Delta_1\): \(y = -2x + 4\) ; \({\Delta _2}:y = {1 \over 2}x + {3 \over 2}\)
Bài Làm:
a) Vecto pháp tuyến \(\Delta_1\) là \(\overrightarrow {{n_1}} = (2;1)\)
Vecto pháp tuyến \({\Delta _2}\) là \(\overrightarrow {{n_2}} = (5; - 2)\)
$cos (\Delta _1,\Delta _2) = \frac{|\overrightarrow {n_1} .\overrightarrow {n_2} |} {|\overrightarrow {n_1}|.| \overrightarrow {n_2} |} = \frac{|2.5 + 1.( - 2)|} { \sqrt 5 .\sqrt 9 } = \frac{8}{\sqrt 145} $
$\Rightarrow ({\Delta _1},{\Delta _2}) \approx {48^0}21'59'$
b) \(y = -2x + 4 ⇔ 2x + y – 4 = 0\)
\(y = {1 \over 2}x + {3 \over 2} \Leftrightarrow x - 2y + 3 = 0\)
Vì \(2.1 + 1.(-2) = 0 ⇔\Delta_1⊥{\Delta _2}\)
Chú ý:
_ Hệ số góc của \(\Delta_1\) là \(k = -2\)
_ Hệ số góc của \({\Delta _2}\) là \(k' = {1 \over 2}\)
Vì \(k.k' = 2.{1 \over 2} = - 1 \Rightarrow {\Delta _1} \bot {\Delta _2}\)