Bài tập & Lời giải
BÀI TẬP
7.10. Xét vị trí tương đối của các cặp đường thẳng sau:
a) m: x + y – 2 = 0 và k: 2x + 2y – 4 = 0.
b) $a:\left\{\begin{matrix}x=1+2t\\ y=4\end{matrix}\right.$ và $b:\left\{\begin{matrix}x=3t'\\ y=1+t'\end{matrix}\right.$
c) d1: x – 2y – 1 = 0 và d2:$\left\{\begin{matrix}x=1-2t\\ y=2-t\end{matrix}\right.$
Xem lời giải
7.11. Tính góc giữa các cặp đường thẳng sau:
a) d: y – 1 = 0 và k: x – y + 4 = 0;
b) $a:\left\{\begin{matrix}x=3+t\\ y=2t\end{matrix}\right.$ và b: 3x + y + 1 = 0;
c) $m:\left\{\begin{matrix}x=1-t\\ y=2-\sqrt{3}t\end{matrix}\right.$ và $\left\{\begin{matrix}x=4-t'\\ y=\sqrt{5}t'\end{matrix}\right..$
Xem lời giải
7.12. Cho hai đường thẳng d: 2x + y + 1 = 0 và k: 2x + 5y – 3 = 0.
a) Chứng minh rằng hai đường thẳng cắt nhau. Tìm giao điểm của hai đường thẳng đó.
b) Tính tang của góc giữa hai đường thẳng.
Xem lời giải
7.13. Trong mặt phẳng Oxy, tìm điểm M thuộc trục Ox sao cho khoảng cách từ M đến đường thẳng ∆: 3x + y – 3= 0 bằng $\sqrt{10}$ .
Xem lời giải
7.14. Trong mặt phẳng Oxy, cho đường thẳng ∆: 2x + y – 5 = 0.
a) Viết phương trình đường thẳng d qua điểm A(3; 1) và song song với đường thẳng ∆.
b) Viết phương trình đường thẳng k đi qua điểm B(–1; 0) và vuông góc với đường thẳng ∆.
c) Lập phương trình đường thẳng a song song với đường thẳng ∆ và cách điểm O một khoảng bằng $\sqrt{5}$ .
Xem lời giải
7.15. Trong mặt phẳng Oxy, cho tam giác ABC có A(2; –1), B(2; –2) và C(0; –1).
a) Tính độ dài đường cao của tam giác ABC kẻ từ A.
b) Tính diện tích tam giác ABC.
c) Tính bán kính đường tròn nội tiếp tam giác ABC.
Xem lời giải
7.16. Cho đường thẳng d: x – 2y + 1 = 0 và điểm A(–2; 2).
a) Chứng minh A không thuộc đường thẳng d.
b) Tìm toạ độ hình chiếu vuông góc của A trên đường thẳng d.
c) Xác định điểm đối xứng của A qua đường thẳng d.
Xem lời giải
7.17. Trong mặt phẳng Oxy, cho hai điểm A(–3; 0), B(1; –2) và đường thẳng d: x + y – 1 = 0.
a) Chứng minh rằng hai điểm A và B nằm cùng phía so với đường thẳng d.
b) Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM.
Xem lời giải
7.18. Trong một hoạt động ngoại khoá của trường, lớp Việt định mở một gian hàng bán bánh mì và nước khoáng. Biết rằng giá gốc một bánh mì là 15 000 đồng, một chai nước là 5 000 đồng. Các bạn dự kiến bán bánh mì với giá 20 000 đồng/1 bánh mì và nước giá 8 000 đồng/1 chai. Dựa vào thống kê số người tham gia hoạt động và nhu cầu thực tế các bạn dự kiến tổng số bánh mì và số chai nước không vượt qua 200. Theo quỹ lớp thì số tiền lớp Việt được dùng không quá 2 000 000 đồng. Hỏi lớp Việt có thể đạt được tối đa lợi nhuận là bao nhiêu ?