Giải câu 2 trang 53 sách toán VNEN lớp 9 tập 2

Câu 2: Trang 53 sách toán VNEN lớp 9 tập 2

Tìm các giá trị của m để mỗi phương trình sau có nghiệm, rồi tính tổng và tích các nghiệm của phương trình đó theo m.

a) $x^2 - 4x + m = 0$

b) $x^2 - 2(m+3)x + m^2 + 3 = 0$

Bài Làm:

a) $x^2 - 4x + m = 0$

$\Delta' = (-2)^2 - 1\times m = 4 - m$.

Để phương trình có nghiệm thì $\Delta' \geq 0 \Leftrightarrow 4 - m \geq 0 \Leftrightarrow m < 4$.

Với $m < 4$ thì phương trình đã cho có hai nghiệm, gọi hai nghiệm đó là $x_1$ và $x_2$.

Theo hệ thức Vi-et, ta có: $\left\{\begin{matrix}x_1 + x_2 = -\frac{b}{a} = -\frac{-4}{1} = 4\\ x_1\times x_2 = \frac{c}{a} = \frac{m}{1} = m\end{matrix}\right.$

b) $x^2 - 2(m+3)x + m^2 + 3 = 0$

$\Delta' = [-(m + 3)]^2 - 1\times (m^2 + 3) = 6(m + 1)$.

Để phương trình có nghiệm thì $\Delta' \geq 0 \Leftrightarrow 6(m + 1) \geq 0 \Leftrightarrow m > -1$.

Với $m > -1$ thì phương trình đã cho có hai nghiệm, gọi hai nghiệm đó là $x_1$ và $x_2$.

Theo hệ thức Vi-et, ta có:

$\left\{\begin{matrix}x_1 + x_2 = -\frac{b}{a} = -\frac{-2(m+3)}{1} = 2(m+3)\\ x_1\times x_2 = \frac{c}{a} = \frac{m^2 + 3}{1} = m^2 + 3\end{matrix}\right.$

Xem thêm các bài Toán VNEN 9 tập 2, hay khác:

Để học tốt Toán VNEN 9 tập 2, loạt bài giải bài tập Toán VNEN 9 tập 2 đầy đủ kiến thức, lý thuyết và bài tập được biên soạn bám sát theo nội dung sách giáo khoa Lớp 9.

PHẦN ĐẠI SỐ

Chương III. Hệ phương trình bậc nhất hai ẩn

Chương IV. Hàm số y = $ax^{2}$ (a khác 0). Phương trình bậc hai một ẩn

PHẦN HÌNH HỌC

Chương III. Góc với đường tròn

Chương IV. Hình trụ- Hình nón- Hình cầu

Lớp 9 | Để học tốt Lớp 9 | Giải bài tập Lớp 9

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 9, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 9 giúp bạn học tốt hơn.