BÀI TẬP
9.7. Tại một quán ăn, lúc đầu có 50 khách trong đó có 2x đàn ông và y phụ nữ. Sau một tiếng, y – 6 đàn ông ra về và 2x – 5 khách mới đến là nữ. Chọn ngẫu nhiên một khách. Biết rằng xác suất để chọn được một khách nữ là $\frac{9}{13}$. Tìm x và y.
Bài Làm:
Theo đề bài ta có:
2x + y = 50 ⇔ y = 50 – 2x.
Sau một tiếng, trong quán có:
50 – (y – 6) + 2x – 5
= 50 – y + 6 + 2x – 5
= 51 + 2x – y (người)
Trong đó, có (2x – 5 + y) người là nữ. Vậy ta có xác suất để chọn được một khách nữ là:
$\frac{2x-5+y}{51+2x-y}=\frac{9}{13}$
⇔ 459 + 18x – 9y = 26x – 65 + 13y
⇔ 4x + 11y = 262
Mà y = 50 – 2x nên ta có:
$4x + 11 \times (50 – 2x) = 262$
⇔ 18x = 288
⇔ x = 16
Do đó, $y = 50 – 2 \times 16 = 18.$
Vậy x = 16, y = 18.