Bài tập 7.44 trang 65 sgk Toán 11 tập 2 KNTT: Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang cân, $AB // CD$ và $AB = BC = DA = a$, $CD = 2a$. Biết hai mặt phẳng $(SAC)$ và $(SBD)$ cùng vuông góc với mặt phẳng đáy $(ABCD)$ và $SA = a\sqrt{2}$ tích của khối chóp $S.ABCD$.
Bài Làm:
Gọi $O$ là trung điểm của $AB$. Ta có $OC=\frac{1}{2}CD=a$
$OS \perp AC$ và $AS=OC=a$. Mặt khác, $(SAC) \perp (ABCD)$ nên $(SAC)\perp AB$. Suy ra $AS \perp SAC$
Tương tự, ta có $SD \perp BD$ và $BD // AC$, suy ra $SD \perp SBD$. Do $(SBD)$ vuông góc với $(ABCD)$, nên $(SBD)\perp BD$. Suy ra $SD$ là đường cao của tam giác $SBD$.
$ABCD$ là hình thang cân nên ta có:
$V_{ABCD}=\frac{1}{2}(AB+CD).h=\frac{1}{2}(a+2a).a=\frac{3}{2}a^{2}$
thể tích khối chóp $S.ABCD$ bằng:
$V_{S.ABCD}=\frac{1}{3}S_{ABCD}.a\sqrt{2}=\frac{1}{3}.\frac{3}{2}a^{2}.a\sqrt{2}=\frac{1}{2}a^3\sqrt{2} $