2. HAI HÌNH ĐỒNG DẠNG
Thực hành 2: Cho hai hình vuông tùy ý ABCD và A'B'C'D' có giao điểm hai đường chéo lần lượt là O và O' (Hình 4).
a) Gọi $A_{1}B_{1}C_{1}D_{1}$ là ảnh của hình vuông ABCD qua phép tịnh tiến theo vectơ $\vec{OO'}$. Gọi $\varphi $ là góc lượng giác $(O'A_{1},O'A')$. Tìm ảnh $A_{2}B_{2}C_{2}D_{2}$ của hình vuông $A_{1}B_{1}C_{1}D_{1}$ qua phép quay $Q_{(O',\varphi )}$.
b) Cho biết $\vec{OA'}=k\vec{OA_{2}}$. Tìm ảnh của hình vuông $A_{2}B_{2}C_{2}D_{2}$ qua phép vị tự $V_{(O,k)}$.
c) Từ kết quả của câu a) và b), hãy cho biết ta có thể kết luận là hai hình vuông tùy ý luôn đồng dạng với nhau được không. Giải thích.
