Giải bài tập 4.6 trang 48 SBT toán 8 tập 1 kết nối:

Bài tập 4.6 trang 48 SBT toán 8 tập 1 kết nối:

Cho hình bình hành ABCD có M, N lần lượt là trung điểm của AB và CD. Gọi P, Q theo thứ tự là giao điểm của AN và CM với đường chéo BD. Chứng minh rằng: DP = PQ = QB.

Cho hình bình hành ABCD có M, N lần lượt là trung điểm của AB và CD. Gọi P, Q theo thứ tự là giao điểm của AN và CM với đường chéo BD. Chứng minh rằng: DP = PQ = QB.

Bài Làm:

Do ABCD là hình bình hành nên AB // CD, AB = CD

Mà M, N lần lượt là trung điểm của AB và CD nên AM // NC và AM = NC

Tứ giác AMCN có AM // NC và AM = NC nên AMCN là hình bình hành.

Suy ra AN // MC.

Xét tam giác ABP, MQ // AP nên theo định lí Thalès ta có: 

$\frac{BQ}{QP}=\frac{BM}{MA}=1$

Do đó BQ = QP. (1)

Xét tam giác DQC, PN // QC nên theo định lí Thalès ta có: 

$\frac{DP}{PQ}=\frac{DN}{NC}=1$

Do đó DP = PQ. (2)

Từ (1) và (2) suy ra BQ = QP = PD.

Xem thêm Bài tập & Lời giải

Trong: Giải SBT Toán 8 Kết nối bài 15 Định lí Thales trong tam giác

Bài tập 4.1 trang 47 SBT toán 8 tập 1 kết nối:

Viết tỉ số của các cặp đoạn thẳng có độ dài như sau:

a) HK = 3 cm và MN = 9 cm;

b) AB = 36 cm và PQ = 12 dm;

c) EF = 1,5 m và GH = 30 cm.

Xem lời giải

Bài tập 4.2 trang 48 SBT toán 8 tập 1 kết nối:

Tìm độ dài x trong các hình vẽ sau (H.5.4):

Bài tập 4.2 trang 48 SBT toán 8 tập 1 kết nối:

Xem lời giải

Bài tập 4.3 trang 48 SBT toán 8 tập 1 kết nối:

Tìm độ dài x trong Hình 5.5:

Bài tập 4.3 trang 48 SBT toán 8 tập 1 kết nối:

Xem lời giải

Bài tập 4.4 trang 48 SBT toán 8 tập 1 kết nối:

Cho Hình 5.6. Chứng minh rằng AB // KI.

Cho Hình 5.6. Chứng minh rằng AB // KI.

Xem lời giải

Bài tập 4.5 trang 48 SBT toán 8 tập 1 kết nối:

Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự tại M, I, N. Chứng minh rằng:

a, $\frac{AM}{MD}=\frac{BN}{NC}$

b, $\frac{AM}{AD}+\frac{CN}{CB}=1$

Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự tại M, I, N. Chứng minh rằng: a, $\frac{AM}{MD}=\frac{BN}{NC}$ b, $\frac{AM}{AD}+\frac{CN}{CB}=1$VVV

Xem lời giải

Xem thêm các bài Giải SBT toán 8 kết nối tri thức, hay khác:

Xem thêm các bài Giải SBT toán 8 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 8 giúp bạn học tốt hơn.

Lớp 8 | Để học tốt Lớp 8 | Giải bài tập Lớp 8

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 8, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 8 giúp bạn học tốt hơn.