Bài tập & Lời giải
Bài tập 3.20 trang 39 SBT toán 8 tập 1 kết nối:
Cho tam giác ABC cân tại A, AH là đường cao. Gọi M, N lần lượt là trung điểm của AB, AC. Gọi D, E lần lượt là điểm sao cho M là trung điểm của HD, N là trung điểm của HE.
a) Chứng minh AHBD, AHCE, BCED là những hình chữ nhật.
b) Tại sao giao điểm của BE và CD là trung điểm của AH?
c) Giải thích tại sao DH = HE, BE = CD.
Xem lời giải
Bài tập 3.21 trang 39 SBT toán 8 tập 1 kết nối:
Hai đường trung tuyến BM, CN của tam giác ABC cân tại A cắt nhau tại G. Gọi H, K lần lượt là điểm sao cho trung điểm của GH là M, trung điểm của GK là N. Chứng minh tứ giác BCHK là hình chữ nhật.
Xem lời giải
Bài tập 3.22 trang 39 SBT toán 8 tập 1 kết nối:
1. Sử dụng tính chất tổng các góc của một tam giác bằng 180° để chứng minh:
a) Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.
b) Tam giác ABC có đường trung tuyến AM bằng nửa BC thì vuông tại A.
2. Sử dụng tính chất hai đường chéo của hình chữ nhật bằng nhau để chứng minh a), b) của ý 1.