Giải bài tập 18 trang 95 SBT toán 8 tập 1 cánh diều:

Bài tập 18 trang 95 SBT toán 8 tập 1 cánh diều:

Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh:

a) Tứ giác EMFN là hình bình hành;

b) Bốn đường thẳng AC, BD, EF, MN cùng đi qua một điểm.

Bài Làm:

Cho hình bình hành ABCD. Trên cạnh AD, BC lần lượt lấy điểm E, F sao cho AE = CF. Trên cạnh AB, CD lần lượt lấy điểm M, N sao cho BM = DN. Chứng minh: a) Tứ giác EMFN là hình bình hành; b) Bốn đường thẳng AC, BD, EF, MN cùng đi qua một điểm.

a) Do ABCD là hình bình hành nên AD = BC và AB = CD; $\widehat{A}=\widehat{C}$ và $\widehat{ABC}=\widehat{CDA}$.

Mà AE = CF và BM = DN => DE = BF và AM = CN.

∆AEM= ∆CFN (c.g.c) => EM = FN.

∆BFM = ∆DEN (c.g.c) => FM = EN.

Tứ giác EMFN có EM = FN và FM = FN và FM = EN nên EMFN là hình bình hành.

b) Tứ giác BMDN có BM = DN và BM // DN nên BMDN là hình bình hành.

Do ABCD, EMFN, BMDN đều là hình bình hành nên các đường chéo của mỗi hình bình hành cắt nhau tại trung điểm của mỗi đường.

Vậy AC, BD, EF, MN cùng đi qua trung điểm của mỗi đường.

Xem thêm Bài tập & Lời giải

Trong: Giải SBT Toán 8 Cánh diều bài 4 Hình bình hành

Bài tập 16 trang 94 SBT toán 8 tập 1 cánh diều:

Cho tam giác ABC có AB = AC = 3 cm. Từ điểm M thuộc cạnh BC, kẻ MD song song với AC và ME song song với AB (điểm D, E lần lượt thuộc cạnh AB, AC). Tính chu vi của tứ giác ADME.

Xem lời giải

Bài tập 17 trang 94 SBT toán 8 tập 1 cánh diều:

Cho tam giác ABC có các đường trung tuyến BD và CE. Lấy các điểm H, K sao cho E là trung điểm của CH, D là trung điểm của BK. Chứng minh:

a) Các tứ giác AHBC, AKCB là hình bình hành;

b) A là trung điểm của HK.

Xem lời giải

Bài tập 19 trang 95 SBT toán 8 tập 1 cánh diều:

Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).

Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).  a) Chứng minh tứ giác BDCH là hình bình hành. b*) Tam giác ABC có điều kiện gì thì ba điểm A, D, H thẳng hàng? c) Tìm mối liên hệ giữa góc A và góc D của tứ giác ABDC.  d) Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.

a) Chứng minh tứ giác BDCH là hình bình hành.

b*) Tam giác ABC có điều kiện gì thì ba điểm A, D, H thẳng hàng?

c) Tìm mối liên hệ giữa góc A và góc D của tứ giác ABDC. 

d) Giả sử H là trung điểm của AM. Chứng minh diện tích của tam giác ABC bằng diện tích của tứ giác BHCD.

Xem lời giải

Bài tập 20 trang 95 SBT toán 8 tập 1 cánh diều:

Cho hình bình hành ABCD có $\widehat{A}$ > 90°, AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh:

a) Tứ giác EPFQ là hình bình hành;

b*) AC ⊥ EP.

Cho hình bình hành ABCD có $\widehat{A}$ > 90°, AB > BC. Trên đường thẳng vuông góc với BC tại C lấy hai điểm E, F sao cho CE = CF = BC. Trên đường thẳng vuông góc với CD tại C lấy hai điểm P, Q sao cho CP = CQ = CD (Hình 16). Chứng minh: a) Tứ giác EPFQ là hình bình hành; b*) AC ⊥ EP.

Xem lời giải

Xem thêm các bài Giải SBT toán 8 cánh diều, hay khác:

Xem thêm các bài Giải SBT toán 8 cánh diều được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 8 giúp bạn học tốt hơn.

Lớp 8 | Để học tốt Lớp 8 | Giải bài tập Lớp 8

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 8, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 8 giúp bạn học tốt hơn.