Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38.

4.36. Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng $\Delta ABC = \Delta DEF$, hãy chứng minh AH = DK.

Bài Làm:

Vì $\Delta ABC = \Delta DEF $ nên  

$\left\{\begin{matrix}\widehat{BAC}=\widehat{EDF};\widehat{B}=\widehat{E};\widehat{C}=\widehat{F}\\AB=DE;AC=DF;BC=EF \end{matrix}\right.$ (các góc tương ứng và các cạnh tương ứng bằng nhau).

Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, $\widehat{AHB}=90^{\circ}$.

Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, $\widehat{DKE}=90^{\circ}$

Xét $\Delta ABH$ và $\Delta DEK $ có:  

$\widehat{AHB}=\widehat{DKE}=90^{\circ}$ (chứng minh trên)

AB = DE (chứng minh trên)

$\widehat{B}=\widehat{E}$ (chứng minh trên)

Do đó, $\Delta ABH = \Delta DEK$ (cạnh huyền – góc nhọn).

Suy ra AH = DK.

Xem thêm Bài tập & Lời giải

Trong: Giải SBT toán 7 Kết nối tri thức bài 15 Các trường hợp bằng nhau của tam giác vuông

BÀI TẬP

4.31. Trong mỗi hình sau (H.4.33) có các cặp tam giác vuông nào bằng nhau? Vì sao?

Xem lời giải

4.32. Cho các điểm A, B, C, D, E như Hình 4.34. Biết rằng E là trung điểm của BC, chứng minh rằng $\Delta ABE$ = $\Delta DCE.$

Xem lời giải

4.33. Cho các điểm A, B, C, D, E như Hình 4.35. Biết rằng AC vuông góc với BD, EA = EB và EC = ED.

Chứng minh rằng:

a) $\Delta AED=\Delta BEC$.

b) $\Delta ABC=\Delta BAD$.

Xem lời giải

4.34. Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN $\perp $ CM.

Xem lời giải

4.35. Cho bốn điểm A, B, C, D như Hình 4.37. Biết rằng $\widehat{DAB}=\widehat{CAB}$, hãy chứng minh CB = DB.

Xem lời giải

4.37. Cho AH và DK lần lượt là hai đường cao của tam giác ABC và DEF như Hình 4.39. Chứng minh rằng:

a) Nếu AB = DE; BC = EF và AH = DK thì $\Delta ABC = \Delta DEF$;

b) Nếu AB = DE, AC = DF và AH = DK thì $\Delta ABC = \Delta DEF$.

Xem lời giải

4.38. Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng:

a) AC = BD.

b) AD // BC

Xem lời giải

4.39. Cho hình chữ nhật ABCD. Trên cạnh AD và BC lần lượt lấy hai điểm E và F sao cho AE = CF (H.4.41). Chứng minh rằng:

a) AF = CE.

b) AF//CE.

Xem lời giải

4.40. Cho năm điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE.

a) Chứng minh rằng AB = CE.

b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng $\widehat{BFC}=90^{\circ}$.

Xem lời giải

Xem thêm các bài Giải SBT toán 7 tập 1 kết nối tri thức, hay khác:

Xem thêm các bài Giải SBT toán 7 tập 1 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 7 giúp bạn học tốt hơn.

Lớp 7 | Để học tốt Lớp 7 | Giải bài tập Lớp 7

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 7, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 7 giúp bạn học tốt hơn.