Giải bài tập 3.13 trang 37 SBT toán 8 tập 1 kết nối:

Bài tập 3.13 trang 37 SBT toán 8 tập 1 kết nối:

Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó.

Bài Làm:

Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó.

Xét hình thang ABCD với hai đáy AB và CD. Giả sử AB < CD.

Kẻ đường thẳng đi qua B song song với AD, cắt CD tại E.

Xét tứ giác ABED có: AB // DE và AD // BE

Do đó ABED là hình bình hành nên AB = DE và AD = BE.

Do AB < CD nên E nằm giữa C và D, do đó EC = DC – DE hay EC = DC ‒ AB. (1)

Trong tam giác BEC có: BE + BC > EC (bất đẳng thức trong tam giác)

Mà AD = BE nên AD + BC > EC (2)

Từ (1), (2) suy ra AD + BC > DC – AB.

Xem thêm Bài tập & Lời giải

Trong: Giải SBT Toán 8 Kết nối bài 12 Hình bình hành

Bài tập 3.12 trang 37 SBT toán 8 tập 1 kết nối:

Xét hai hình bình hành MNBA và MNCB.

a) Chứng minh A, B, C là ba điểm thẳng hàng;

b) Chứng minh B là trung điểm của AC;

c) Hỏi tam giác MAB thoả mãn điều kiện gì để MNCA là một hình thang cân?

d) Lấy điểm D để tứ giác MNDC là hình bình hành. Hỏi tam giác MAB thoả mãn điều kiện gì để MNDA là một hình thang cân?

Xem lời giải

Bài tập 3.14 trang 37 SBT toán 8 tập 1 kết nối:

Cho hình bình hành ABCD với góc A tù. Dựng bên ngoài hình bình hành đó các tam giác đều ABE và DAF. Chứng minh rằng tam giác CEF là tam giác đều (Gợi ý: Chứng minh các tam giác AEF, DCF, BEC bằng nhau).

Xem lời giải

Bài tập 3.15 trang 37 SBT toán 8 tập 1 kết nối:

Chứng minh rằng nếu hai góc kề của mỗi cạnh của một tứ giác đều là hai góc bù nhau thì tứ giác đó là một hình bình hành.

Xem lời giải

Bài tập 3.16 trang 37 SBT toán 8 tập 1 kết nối:

Cho hình thang ABCD với hai đáy AB, CD. Gọi K là trung điểm của BC. Lấy điểm A', D' sao cho K là trung điểm của AA' và DD'. Hỏi tứ giác AD'A'D là hình gì? Vì sao?

Xem lời giải

Bài tập 3.17 trang 37 SBT toán 8 tập 1 kết nối:

Cho hai điểm phân biệt A, B nằm bên trong góc xOy (không bẹt). Tìm điểm D thuộc tia Ox, điểm E thuộc tia Oy sao cho ADBE là một hình bình hành.

Xem lời giải

Bài tập 3.18 trang 37 SBT toán 8 tập 1 kết nối:

Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF; lấy các điểm G thuộc BC, H thuộc AD sao cho BG = DH. Chứng minh EGFH là một hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.

Xem lời giải

Bài tập 3.19 trang 37 SBT toán 8 tập 1 kết nối:

Cho tam giác ABC không vuông tại A. Dựng bên ngoài tam giác đó hai tam giác ABD, ACE vuông cân tại đỉnh A rồi dựng hình bình hành AEID.

a) Chứng minh hai tam giác ABC và DAI bằng nhau.

b) Chứng minh đường thẳng AI vuông góc với BC.

c) Chứng minh đường thẳng BE vuông góc với đường thẳng CD.

d) Gọi K là trung điểm của BD, chứng minh KC = KI và KC vuông góc với KI. (Gợi ý: Chứng minh hai tam giác AKI và BKC bằng nhau).

Xem lời giải

Xem thêm các bài Giải SBT toán 8 kết nối tri thức, hay khác:

Xem thêm các bài Giải SBT toán 8 kết nối tri thức được biên soạn cho Học kì 1 & Học kì 2 theo mẫu chuẩn của Bộ Giáo dục theo sát chương trình Lớp 8 giúp bạn học tốt hơn.

Lớp 8 | Để học tốt Lớp 8 | Giải bài tập Lớp 8

Giải bài tập SGK, SBT, VBT và Trắc nghiệm các môn học Lớp 8, dưới đây là mục lục các bài giải bài tập sách giáo khoa và Đề thi chi tiết với câu hỏi bài tập, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và 2 (đề kiểm tra học kì 1 và 2) các môn trong chương trình Lớp 8 giúp bạn học tốt hơn.