Bài 5.4 Hai xe buýt xuất phát cùng lúc từ hai bến A và B cách nhau 40 km. Xe buýt xuất phát từ A đến B với tốc độ 30 km/h và xe buýt xuất phát từ B đến A với tốc độ 20 km/h. Giả sử hai xe buýt chuyển động thẳng đều.
a) Sau khi rời bến bao lâu thì hai xe gặp nhau trên đường?
b) Tính quãng đường của hai xe đã đi được khi hai xe gặp nhau.
Bài Làm:
a) Hai xe chuyển động ngược chiều.
Gọi thời gian từ lúc hai xe xuất phát đến khi gặp nhau là t.
Tổng quãng đường hai xe đi được cho đến khi gặp nhau bằng độ dài đoạn đường AB.
AB = sA + sB = vAt + vBt
$\Rightarrow t=\frac{AB}{v_{A}+v_{B}}=\frac{40}{30+20}$ = 0,8 h.
b) Quãng đường của hai xe xuất phát từ A và B đi được khi hai xe gặp nhau lần lượt là:
sA = vA.t = 30.0,8 = 24 km
sB = vB.t = 20.0,8 = 16 km